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The radiofrequency quadrupole linear ion trap is a widely used device in physics and chemistry. When
used for trapping of large ion clouds, the presence of anharmonic terms in the radiofrequency potential
limits the total number of stored ions. In this paper, we have studied the anharmonic content of the
trapping potential for different implementations of a quadrupole trap, searching for the geometry best
suited for the trapping of large ion clouds. This is done by calculating the potential of a real trap using
SIMION8.0, followed by a fit, which allows us to obtain the evolution of anharmonic terms for a large part
of the inner volume of the trap.
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. Introduction

The trapping of charged particles by radiofrequency (RF) electric
elds was first demonstrated in 1954 [1] and quickly proved to be
n extremely powerful tool for the experimental investigation of a
ide range of phenomena. In particular the linear quadrupole RF

rap is found at the heart of many experiments where few to many
ons are laser-cooled to very low temperature for applications in
ptical frequency metrology [2], quantum computation [3,4] and
ormation of large Coulomb crystals [5]. In this paper, the deviation
rom the ideal harmonic potential is evaluated for different imple-

entations of linear quadrupole ion traps, in order to maximize the
umber of trapped ions.

In this article, we briefly recall the basic information about linear
uadrupole traps; detailed descriptions of RF traps and trajecto-
ies of the stored ions can be found in several textbooks (e.g. [6]).
he most simple linear RF trap is formed by four parallel rods of
adius re, see Fig. 1. In such devices, the trapping of charged particles
n the transverse direction is achieved by applying an alternating

otential difference between two pairs of electrodes (called the RF
lectrodes in the following). The trapping along the symmetry axis
f the trap (to be taken as the z axis) is realised by a static poten-
ial applied to two electrodes sets at both ends of the trap (called

∗ Corresponding author. Tel.: +33 491 28 81 45.
E-mail address: jofre.pedregosa@univ-provence.fr (J. Pedregosa).

387-3806/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.ijms.2009.12.009
the DC electrodes in the following). The potential at the centre of a
quadrupole linear trap is then well approximated by:

�(x, y, z, t) = (U0 + V0 cos ˝t)

2r2
0L

(x2 − y2) + �Udc

z2
0

(
2z2 − x2 − y2

2

)

(1)

where V0 is the amplitude of the RF potential difference between
two neighbouring electrodes, U0 a static contribution to this poten-
tial and Udc the voltage applied to the DC electrodes. ˝ is the
angular frequency of the RF voltage, r0 is the inner radius of the
trap, 2z0 is the length of the trap, corresponding to the distance
between the DC electrodes, � and L are geometric loss factors. � is
mainly induced by shielding effects whereas L stands for a loss in
trapping efficiency due to the non-ideality of the quadrupole [7].
While in most cases � is an accurate approximation close to the
trap axis and around z � 0, strong deviations occur further away
from the centre. The deviations induced depend strongly on the

geometry used for the trap, as it is shown in the present article.

The motion of a single ion in a potential defined by �(x, y, t) is
described by the Mathieu differential equations [8]. The stability
of the trajectory is controlled by the Mathieu parameters, which
depend on the working parameters of the trap and on the charge

http://www.sciencedirect.com/science/journal/13873806
http://www.elsevier.com/locate/ijms
mailto:jofre.pedregosa@univ-provence.fr
dx.doi.org/10.1016/j.ijms.2009.12.009
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Fig. 2. Design of the first two analysed geometries. The dimensions used in both
cases are: r0 = 4 mm and z0 = 10 mm, with re = 1.14511r0. Trap #1 is formed by
four segmented rods whose electrical connections are detailed in Table 1. Trap #2
consists of four continuous rods surrounded by DC electrodes made of two external
ig. 1. Schematic transverse view of a linear RF trap made of four cylindrical elec-
rodes. The axes convention is shown, as well as the definitions of the applied RF
oltages Vrf = (U0 + V0 cos ˝t/2), the trap radius r0 and the electrode radius re .

Q ) and mass (M) of the particle:

qx = −qy = 2QV0

M˝2r2
0L

ax = a − �a; ay = −(a + �a)

a = 4QU0

M˝2r2
0L

; �a = 4�QUdc

Mz2
0˝2

(2)

here a represents the Mathieu parameter of the pure quadrupole
ass filter, and �a is the perturbation introduced by the presence

f the axial confining voltage [9]. Most traps are operated in the
diabatic regime, where it is possible to decouple the short time
cale of the RF-driven motion, called micromotion, and the longer
ime scale of the motion induced by the envelope of the electric
eld, known as macromotion [10]. In this frame, the ion’s motion is
he superposition of a periodic oscillation in an effective harmonic
otential, characterized by the radial frequencies ˝x(ax, qx, ˝) and
y(ay, qy, ˝), with the RF-driven motion (at frequency ˝) with an

mplitude proportional to the local RF electric field.
The simultaneous trapping of two or more ions couples the x

nd y equations of motion through a nonlinear term induced by the
oulomb interaction and an analytical solution does not exist any

onger. Moreover, due to this nonlinear contribution the ions gain
nergy from the RF field. This energy gain depends on the ion den-
ity and/or neutral background pressure inducing collisions [11].

hile it can be negligible for very dilute ion clouds in good vac-
um conditions, it can be a critical point for the storage of dense
louds where an important fraction of the ions can be lost due to
his gain of energy.

Nevertheless, even in the case of a single ion in a perfect vac-
um, nonlinearities can be introduced in the equations of motion
y differences between the real RF and DC potentials and the ideal
ase. Imperfections in the potentials come from misalignments of
he different electrodes and differences between the electrode sur-
aces from the ideal equipotential surfaces. These effects are very
ell known for hyperbolic Paul traps where holes in the electrodes

re necessary for the injection and extraction of ions, electrons or
ight. Moreover, these undesired contributions to the potential can
ontain higher harmonic contributions which lead to a special form
f RF-heating. More precisely, it has been shown [12] that for an
mperfect Paul trap, nonlinear resonances leading to the loss of ions

ccur in the otherwise stable region, if the ion’s secular frequencies
nd the radiofrequency are related by a linear combination with
nteger coefficients (Nx, Nz, k):

x˝x + Nz˝z = k˝. (3)
rings of longitudinal dimension lring = 4 mm, inner radius rint = (r0 + 2re) + 1 mm
and outer radius rext = rint + 5 mm. The distance between these rings defines 2z0.
The dotted lines define the volume used for the SIMION8.0 calculations.

This resonant phenomena due to nonlinear couplings has been
observed experimentally by several groups [13,14].

Ideal harmonic potentials are obtained only if the shape of the
RF electrodes follows the theoretical equipotential surface, a hyper-
bolic surface in the case of a quadrupole trap. The difficulty in
machining such surfaces can be overcome by realizing circular rods.
In this case, the relation re = 1.14511r0 between the trap radius r0
and the electrode radius re guarantees a minimal contribution of
the lowest order term in the perturbation potential expansion for
infinitely long RF electrodes [15]. This radius ratio is used for all
the traps studied in this article. While some work has been done in
optimizing miniature [7] and cylindrical [16] traps designs, to our
knowledge no study has concentrated on the study of the anhar-
monic terms in a real linear trap.

Our research project aims at trapping a very large and laser-
cooled ion cloud to study fundamental phenomena related to their
dynamics and thermodynamics. In order to reach a very high tem-
poral stability of the ion number, the trapping potential has to be
quasi-ideal over a large part of the trapping volume. The ion cloud
is expected to fill the trap to half the trap size in both directions
(−z0/2 < z < z0/2 and 0 < r < r0/2) with a sufficiently high ion
density such that a high number of ions (∼107) can be reached in a
compact trap.

The present study evaluates the anharmonic contributions to
the trapping potential of various existing devices and proposes an
optimized alternative version. Contributions due to the finite size
of the RF electrodes and to the shape of the DC electrodes are quan-
tified and compared. Contrary to former studies in spherical traps
[7] where anharmonic contributions were evaluated in the very
centre of the trap (r/r0, z/z0 < 0.1), which is relevant for single
ions or chains of single ions, the present study is made in three
dimensions and extends to values beyond z0/2. This is motivated
because a large ion cloud explores a much bigger volume of the trap,
and therefore it is desirable that this volume has a low anharmonic
content in order to minimise RF-heating.

Fig. 2 shows the two geometries initially analysed. We have cho-
sen only devices which leave the z-axis free as this axis is often
needed to implement laser cooling and/or to introduce/extract ions.

The segmented rod geometry (#1) is used, among others, by the Ion
Trap Group in Åarhus University to trap large ion crystals [5,9].

This geometry can be used with two different electrical con-
figurations, named #1.1 and #1.2 (see Table 1 for details). #1.2
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Table 1
Electrical configuration for the different trap geometries.
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#1.1: +Vrf −Vrf Udc + Vrf Udc − Vrf

#1.2: +Vrf −Vrf Udc Udc

#2: +Vrf −Vrf Udc –

as been analysed due to its simplicity as #1.1 requires a much
ore advanced electronic configuration than #1.2 (see Table 1).

he second implementation, #2, is similar to one of the trap used
n Quantum Optics and Spectroscopy Group at Innsbruck University
or quantum information experiments [17].

This article is organised in several sections. The method used to
alculate the potential created by a given geometry and the fitting
rocedure is described in Section 2. In Section 3, the anharmonic
ontributions are calculated and evaluated for the RF-part while
e discuss the DC potential in Section 4. Finally, an alternative

eometry is introduced and analysed in Section 5, followed by the
onclusion, Section 6.

. Fitting the “real” trap potentials

.1. Computation of the potentials

The commercial software SIMION8.0 [18] has been used
o numerically solve the Laplace equation for each geometry.
IMION8.0 uses a Finite Difference Method (FDM), where the solu-
ion is obtained at each node of the mesh used to describe the
lectrodes and the space between them. The error on the electro-
tatic potential using FDM scales with 1/h [19], where h is the node
ensity (number of nodes/mm), but the reached accuracy depends
n the particular geometry of the electrodes. In order to check
he 1/h dependency and to obtain an estimation of the accuracy
f the results given by the software, we have used SIMION8.0 to
alculate the potential for infinitely long electrodes1 with hyper-
olic sections in which case the potential can be exactly described
y: �a(x, y) = (x2 − y2)/(2r2

0 ) when V0 = 0 and U0 = 1V . Note that
hile the confinement is achieved dynamically, the anharmonic

ontributions to the potential do not depend on time and can be
nalysed as a static property of the trap.

We can then calculate the average relative error Er(h), as a func-
ion of the node density h, using:

r(h) = 1
nxny

nx∑
i

ny∑
j /= i

∣∣∣∣�s(xi, yj) − �a(xi, yj)
�a(xi, yj)

∣∣∣∣ , (4)

here �s(xi, yj) is the SIMION8.0 solution with xi+1 − xi = yi+1 −
i = h and nx, ny are the number of nodes.

Fig. 3 shows Er(h) for 0 ≤ x ≤ r0/2 and 0 ≤ y ≤ r0/2 (the axes
re oriented as in Fig. 1). Fig. 3 also shows a fit using f (h) = a/h. The
omparison of the two plots indicates that Er(h) closely follows the
/h law. The error bars correspond to one standard deviation, �.

For the computation of the potential created by #1 and #2, all
ossible symmetries have been used to reduce the required volume,
s indicated in Fig. 2 by the dashed lines. This is important due to
omputer memory issues, which limit the mesh density which can
e used for a given problem. In the present study, we were limited

o a node density of 32 nodes/mm, for all computations carried
ut for a 3D volume. Fig. 3 shows that this mesh density already
rovides an accuracy of 0.3 % for the hyperbolic trap. As the sizes of
he studied traps are identical to the hyperbolic trap, the precision

1 In SIMION8.0, it is possible to define a 2D plane only, in which case, the program
ssumes this 2D section extends to [−∞, +∞].
Fig. 3. Estimation of the error between the numerical solution given by SIMION8.0
and the known analytical potential in the case of infinite hyperbolic electrodes as a
function of the mesh density h. The dots show Er (h) calculated by Eq. (4) whereas
the curve plots f (h) = a/h, with a = 8.8 × 10−2. The error bars correspond to 1�.

reached by SIMION8.0 is of the same order. Therefore, the use of the
potentials computed by SIMION8.0 in the study of the anharmonic
content in a quadrupole linear trap is fully justified.

2.2. Fitting the potentials

An analytical two-dimensional solution of the Laplace equation
for a quadrupole trap with circular sections exists, if we assume
infinitely long RF electrodes [15]:

�(x, y) = C0 + Real

{ ∞∑
m=0

C(4m+2)�
(4m+2)

}
; � = x + iy (5)

where C(4m+2) are real coefficients and we have introduced a uni-
form contribution C0 to equation (8) of [15].

As pointed out in the introduction, the term C6 vanishes for
infinitely long electrodes for re = 1.14511r0 [15]. To test our analy-
sis of the potentials, we have computed the potential created by
a 2D mass filter (infinitely long RF electrodes, without DC elec-
trodes) for several values of the radius ratio re/r0 and found the
C(4m+2) coefficients of Eq. (5), by a fitting procedure analysed in
the following. The evolution of |C6| as a function of re/r0 shown in
Fig. 4 shows that the C6 term can be decreased by 3 orders of magni-
tude by choosing the appropriate radius ratio and confirms the zero
crossing of C6 for a re/r0 value between 1.144 and 1.146. This accu-
racy corresponds to the maximal spatial resolution of our mesh for
this problem (a high mesh density of 500 nodes/mm was possible
due to the 2D nature of the problem). While this method does not
provide a precise estimation of the “magic” radius ratio, it clearly
agrees with the analytical result of re = 1.14511r0, showing that
SIMION8.0 produces a very good representation of the potential
created by an RF trap. Higher order terms show a similar quantita-
tive behaviour as C6, with respective minima for C10 at re/r0 ≈ 0.78,
and re/r0 ≈ 0.58 for C14.

In addition, Fig. 4 shows the ratio between the ideal and the
computed C2 coefficients which corresponds to the geometrical loss
factor, L introduced in Eq. (1):
L = C ideal
2

Creal
2

C ideal
2 = U0

2r2
0

(6)
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ig. 4. Squares and right axis: absolute value of the first anharmonic coefficient C6,
ersus re/r0 for r0 = 4 mm. Blue circles and left axis: loss factor, L versus re/r0.

or the chosen radius ratio, there is no loss of trapping efficiency
nduced by the circular shape of the electrodes (L � 1). We can
bserve that L takes values below 1 for larger electrode radius,
hich for experimental reasons (decreasing inter-electrode dis-

ance) might not be an appropriate choice. In the following, all the
tudied trap configurations have the same radius r0 = 4 mm and
e = 4.58 mm.

The finite size of the rods and the presence of the DC electrodes
ntroduce a dependency on z of the coefficients C(4m+2). This depen-
ency can be obtained by performing a fit at each node along z to
he numerical solution obtained by SIMION8.0. The trap parame-
ers chosen are V0 = 0, U0 = 1V and Udc = 0. These values remain
he same throughout the paper, unless specified otherwise. A trun-
ated version of Eq. (5) is used to perform a least-squares fit [20].
he points included in the fitting procedure belong to a 2D-square
efined by 0 ≤ x ≤ r0/2 and 0 ≤ y ≤ r0/2, as r = r0/2 is considered
s the maximum expected radius of the trapped ion cloud.

To demonstrate the relevance of the fit, the �2 of the fitting
rocedure for geometry #1.1 is plotted on Fig. 5 for each zk and for
ncreasing maximum order mmax included in the fitting Eq. (5).
These curves illustrate several features. First, they confirm that

he C6 (m = 1) contribution does not modify the quality of the fit
n the centre of the trap, which is expected from the choice of the
lectrode radius re that nulls the C6 contribution to the potential

ig. 5. Evolution of the �2 of the fitting procedure versus zk/z0, for increasing highest
rder mmax included in the fitting Eq. (5). The curves corresponding to mmax = 2 and
overlap each other, showing that no gain is obtained by retaining orders higher

han mmax = 2.
ass Spectrometry 290 (2010) 100–105 103

for infinitely long electrodes. Second, they demonstrate that adding
higher orders than m = 2 does not lead to an improvement of the fit
and in the following m = 2 is the highest order retained in the fitting
function. Furthermore, the �2 parameter, which is lower than 10−9

for zk ≤ z0/2 and mmax = 2 increases drastically from zk = z0/2 to
z0. From zk/z0 = 0.6, one can see that adding higher order terms
to the fitting equation does not result in an improvement of the �2

parameter. This means that Eq. (5) is not relevant in this part of the
trap to reproduce the potential calculated by SIMION8.0 and that
another analytical expression should be introduced to represent the
potential close to the DC electrodes. As we are interested in fitting
the potential for zk/z0 < 0.5, curves of Fig. 5 confirm the relevance
of the fitting equation on the volume of interest.

To compare the precision of the fitting procedure to the preci-
sion of the SIMION8.0 calculation, we define the relative error of the
fit, Erfit(zk), taken as the relative difference averaged over the trans-
verse plane, between the SIMION8.0 solution, �s(xi, yj, zk), and the
fitted potential, �f (xi, yj, zk):

Erfit(zk) = 1
nxny

nx∑
i

ny∑
j /= i

∣∣∣∣�s(xi, yj, zk) − �f (xi, yj, zk)
�s(xi, yj, zk)

∣∣∣∣ (7)

The relative error Erfit(zk) is calculated for the geometry #1.1 and
#2 for zk ≤ z0/2. For this relative error, the addition of the m = 2
contribution to the fitting potential allows reducing Erfit(zk) by a
factor of 3 in the centre of the trap and by a factor of 2 at zk = z0/2.
The relative error then reaches 5 × 10−6 in the centre of the trap
for both geometries and 8 × 10−6 for geometry #2 and 13 × 10−6

for geometry #1.1 at zk = z0/2. This relative error is three orders of
magnitude smaller than the relative error one can expect from the
SIMION8.0 calculations. Nevertheless, fitting the calculated poten-
tial is relevant for comparison between different geometries as the
relative precision of the fit is as good for the two geometries con-
sidered in the text and the precision of the SIMION8.0 calculations
should be identical as the basic geometry is the same for all the
configurations compared here. Once all the coefficients C4m+2(zk)
are determined at each zk and for each configuration, it is possible
to study the evolution of the anharmonic contribution along the
trap axis and to compare the different configurations.

3. Anharmonic contribution

The relative anharmonic contribution, �(x, y, z) of the potential
in the trap can be obtained using:

�r = �q(1 + � + ��) (8)

with

�q = C0 + Real{C2�2}
� = Real{C6�6 + C10�10} + ��f

C0 + Real{C2�2}
�� = ��s

C0 + Real{C2�2}

where �r represents the real potential created by each geometry
and �q its harmonic contribution. ��f is the difference between
the SIMION8.0 solution and the fitted potential calculated using
the C4m+2(zk) coefficients found by the fitting algorithm. ��s repre-

sents the unknown difference between the real and the SIMION8.0
solution, �� is its relative value with respect to the harmonic con-
tribution �q.

In order to facilitate the visualisation of the behaviour of the
anharmonic content, it is useful to calculate the averaged absolute
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ig. 6. Averaged anharmonic contribution 〈�(zk)〉 along the trap axis for the config-
rations #1.1, #1.2, #2. Configurations #3 and #4 are introduced later in the text.
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larity, only every 4th node is plotted.

alue of � along the z-axis:

�(zk)〉 = 1
nxny

nx∑
i

ny∑
j

|�(xi, yj, zk)| (9)

The evolution of 〈�(zk)〉 is shown in Fig. 6 for the configurations
1.1, #1.2 and #2. While all the configurations have comparable
nharmonic content at the centre of the trap, strong differences
ppear between them when leaving the trap centre. As expected,
ue to the length of the RF electrodes with respect to the studied
olume, configurations #1.1 and #2 show lower values of 〈�(zk)〉
ompared to #1.2. The increment observed from zk/z0 > 0.5 in the
ase of #1.1 can be explained by the unavoidable gap between RF
nd DC electrodes which generates a rise of the anharmonic content
t the edge of the trap. The dip observed for 〈�#1.1(zk)〉 is due to a
ero crossing of the �(xi, yj, zk) in Eq. (9). In the area of interest
�(zk)〉 remains rather constant along the trap axis for #2 and #1.1.

Fig. 6 shows that the truncation of the RF electrodes in config-
ration #1.2 leads to a substantial increase of the anharmonicity
rom zk/z0 > 0.3, which could limit the usable trapping volume.
o demonstrate the effect of the boundary conditions, we have cal-
ulated the potential created by a configuration called #3, similar
o #1.2 but with the DC-rods removed. We observe in Fig. 6 that
his leads to a reduction of the anharmonic terms, illustrating the
mportance of geometric aspects.

We emphasize here that the only difference between #1.1 and
1.2 is in the voltage applied to the DC electrodes. Therefore, the
iscretization of the mesh by SIMION8.0 and so the calculation
rror is exactly the same for the two configurations. The fact that
he expected behaviour of the anharmonic contribution is repro-
uced in each case re-enforces the validity of the assumption that
IMION8.0 error contribution is the same for all the configurations
nd that the comparative study performed in this article is signifi-
ant.

. DC potentials
In this section, we focus on the potential created by the DC elec-
rodes inside the trap, as it also strongly depends on the chosen
onfiguration. While at the very centre of the trap, the potential
an be approximated by an harmonic function, it is not necessar-
Fig. 7. Normalised potentials created by the DC electrodes on axis (0,0,z) for geome-
tries #1 (empty circles) and #2 (crosses) together with their respective fits to f (z) =
az2 (solid lines). Notice that the fit was performed considering only V(zk ≤ 0.5z0).

ily true if larger volumes of the trap are considered. A harmonic
potential shape can be desirable as it is often a necessary assump-
tion when describing the ion dynamics or equilibrium properties
inside the trap, as for example to calculate the aspect ratio (radius
over length) of an ion cloud [21]. Fig. 7 shows the potentials created
only by the DC electrodes (V0 = U0 = 0) of the geometries #1 and
#2, along the z-axis. For comparison, these potentials have been
normalised using:

Vnorm
DC (x, y, z) = VDC(x, y, z) − VDC(0, 0, 0)

VDC(0, 0, z0) − VDC(0, 0, 0)
. (10)

A fit to f (z) = az2 using only the values of the potential in the
interval 0 ≤ zk/z0 ≤ 0.5 (see Fig. 7) clearly shows the divergence
from an harmonic potential at the outer edges of the trap. In order
to quantify the degree of harmonicity, we successively extended
the fit, starting from the centre, until the correlation coefficient R2,
commonly used to quantify the goodness of a fit, was worse than
0.9990. This was obtained at zk/z0 = 0.240 and zk/z0 = 0.597 for
#1 and #2 respectively.

Another issue to take into consideration is the screening of the
DC potential due to the presence of the RF electrodes, which is
masked in Fig. 7 due to the normalisation used. Assuming a poten-
tial depth �V = V(0, 0, z0) − V(0, 0, 0) of 1 V, we would need to
apply to the DC electrodes 3.1 V for geometry #1, but 5.5 kV for #2.
The requirement for very high voltages, without being critical in
many situations, can make option #2 inappropriate for an exper-
imental set-up where a high potential depth is needed or when
designing an ion trap for space applications where the weight of
high power supplies eliminates this configuration. On the other
hand, #1.1 presents the disadvantage of the complexity of the elec-
tronics needed for driving the electrodes of the trap.

The methodology presented so far, allows to study alternative
designs and evaluate their performance. As a consequence, we pro-
pose an alternative geometry, which is introduced and analysed in
the next section, showing that it is possible to achieve similar per-
formances concerning low anharmonic contributions as #1.1 and
#2, without the need for high voltages or advanced electronics.
5. An alternative geometry

An alternative geometry, denoted as #4 in the following, is
described in Fig. 8. It uses continuous rods as in configuration #2 but
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ig. 8. Description of the proposed alternative geometry, #4. The electric connec-
ions are the same as for trap #2, see Table 1 for details. The DC electrodes geometry
as been chosen so that the inner cut corresponds to the circumference inscribed in
square defined by the four rod centres.

ith a different design of the DC electrodes that strongly decreases
he screening of the RF electrodes.

The evolution along the z-axis of the averaged anharmonic con-
ribution 〈�(zk)〉 is shown in Fig. 6. We observe that the anharmonic
ontent is comparable to the configuration #2 up to zk/z0∼0.4 and
ower than #1.1 for the rest of the trap.

Regarding the DC-voltages, the correlation coefficient R2 is
ound to be smaller than 0.9990 for zk/z0 ≤ 0.28. Although the
egree of harmonicity on the axial potential is not as high as for
rap #2, this alternative geometry only needs an applied voltage of
7 V in order to have �V = 1 V. For some experiments, a smaller
oltage can be preferable than a perfect harmonic behaviour on the
xial direction.

It is worth mentioning that the inner cut off of the DC electrodes
orresponds to the circumference inscribed in a square centred on
he electrodes as shown in Fig. 8. A geometry with the inner radius
ut off equal to r0 was also studied. The voltage required in that
ase for a potential depth �V = 1 V was further reduced to 3.8 V.
owever, this reduced shielding is paid by an increase of the anhar-
onicity which reaches the level of the worse geometry #1.2. This

omparison shows that the anharmonic contributions are very sen-
itive to the position of the inner cut-off radius and configuration
4 is a good solution to reduce these contributions.

. Conclusion

The anharmonic contribution to the potential created by a lin-
ar quadrupole trap has been studied for a large trap volume for
everal implementations of the DC and RF electrodes. We found
hat while the anharmonic content is similar at the centre of the
rap in all the different implementations, they behave extremely
ifferently further away. The already operated configurations #1.1
nd #2 as well as the proposed configuration #4 achieve similar

ood performances for zk/z0 < 0.5. Furthermore, for zk/z0 > 0.5
he rf potential of configuration #4 keeps a level of anharmonicity
ntermediate between #2 and #1.1. The rather complicated elec-
ronic set-up needed for the implementation of #1.1 and the need
f high static voltages for the geometry #2, make these designs not

[

[
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suited for all experimental situations. The alternative geometry #4,
proposed in this paper, represents therefore a trade-off between
complexity of the implementation and low anharmoncities, and
should allow the envisaged trapping of a very large ion cloud.
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